Caspase-mediated cleavage of the Ca2+/calmodulin-dependent protein kinase-like kinase facilitates neuronal apoptosis.

نویسندگان

  • M Kruidering
  • T Schouten
  • G I Evan
  • E Vreugdenhil
چکیده

This study was designed to identify the role of a recently identified Ca(2+)/calmodulin-dependent protein kinase (CaMK)-like kinase (CaMKLK) in neuronal apoptosis. For this purpose, we studied proteolytic cleavage of CaMKLK by caspases in vitro and in neuronal NG108 cells. In addition, we have investigated the effect of overexpression of wild type and mutant CaMKLK proteins on staurosporine- and serum deprivation-induced apoptosis of NG108 cells. We found that CaMKLK is a substrate for caspase-3 and -8, both in vitro and in NG108 cells during staurosporine- and serum withdrawal-induced apoptosis. Substitution of an aspartic acid residue at position 62 in an asparagine residue within a putative caspase cleavage site completely blocked cleavage of CaMKLK, strongly indicating that (59)DEND(62) is the caspase recognition site. Overexpression of an Asp(62) --> Asn CaMKLK mutant protected NG108 cells from staurosporine-induced apoptosis to a similar extent as Bcl-x(L). In contrast, overexpression of wild type CaMKLK did not lead to protection. Moreover, microinjection of Asp(62) --> Asn CaMKLK protected NG108 cells from serum deprivation-induced apoptosis, while overexpression of a caspase-generated noncatalytic N-terminal CaMKLK fragment exacerbated apoptosis. Together, our data suggest that cleavage of CaMKLK and generation of the noncatalytic N-terminal domain of CaMKLK facilitate neuronal apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A potential role for calcium / calmodulin-dependent protein kinase-related peptide in neuronal apoptosis: in vivo and in vitro evidence.

Previously, we have established that a product of the doublecortin-like kinase (DCLK) gene, DCLK-short, is cleaved by caspases during serum deprivation. Subsequently, the N-terminal cleavage product of DCLK-short facilitates apoptosis in the neuroblastoma cell line NG108. As this N-terminal cleavage product is highly homologous to calcium/calmodulin-dependent protein kinase-related peptide (CAR...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Vitexin protects against hypoxic-ischemic injury via inhibiting Ca2+/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain

Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca2+/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 42  شماره 

صفحات  -

تاریخ انتشار 2001